Unidirectional Group Messaging: Simple, Secure, and Efficient Solutions

Cryptographic Applications Workshop

February 23

Real-World Cryptography Group FAU Erlangen-Nürnberg, Germany

Daniel Collins and Paul Rösler

(Group) Messaging is Complex

Eric Rescorla <ekr@rtfm.com> Thu, 03 May 2018 14:27 UTCShow header

Hi folks,

Several of us (Karthik, Richard, and I) have been working on an alternative to ART which we call TreeKEM. TreeKEM parallels ART in many ways, but is more cryptographically efficient and is much better at handling concurrent changes. The most common behaviors (updating ones own key) can be executed completely concurrently, merging all the requested changes.

Internet Engineering Task Force (IETF) Request for Comments: 9420 Category: Standards Track ISSN: 2070-1721			R. Barnes Cisco B. Beurdouche Inria & Mozilla R. Robert	
				Phoenix R&D
				J. Millican
			1	Meta Platforms
				E. Omara
			ł	<. Cohn-Gordon
			Univers	sity of Oxford
				July 2023
The Messaging Layer Security (MLS) Protocol				
		Ratchet Tree		Secret / Tree /
Public	Tree /	\ \ +> commit_secret - /	 V -> epoch_secret> encry 	/ / yption_secret>+ \ \
pk(ABCD)		I I I	N,
/	١		epoch_secret	
pk(AB)	-		i i i	
/ \ ok(A) pk(B)	/ \ pk(C) pk(D)		·'	
Private @ A	Private @ B	Private @ C	Private @ D	
ABCD	ABCD	ABCD	ABCD	
/ \	/ \	/ \	/ \	
AB _	AB _	? _	? _	
/ \ / \	/\ /\ 7 B 7 7	/ \ / \	/\ /\ ? ? ? D	

B. Beurdour

Inria & Mozil

R. Rober

Phoenix R

J. Millica

Meta Platfor E. Oma:

K. Cohn-Gordo Jniversity of Oxfor

July 20

(Group) Messaging is Complex

Properties & Features:

- Active security
- Unreliable network
- Dynamic membership
- Administration
- Malicious insiders
- Concurrency

Simplifications:

- Passive adversaries
- Round-based / synchronous / reliable / etc. network
- Static group
- Honest members
 - Honest deletion

Systematic Simplification

Unidirectional Group Messaging: Simple, Secure, and Efficient Solutions Cryptographic Applications Workshop | Paul Rösler | Zürich | 23-02-27

Unidirectional Group Messaging

Unidirectional Group Messaging: Security

S

- Forward Security for both
- Post-Compromise Security for Sender
- Diverging upon Impersonation

Static Group: Construction

Single Sender

- Forward Security for both
- Post-Compromise Security for Sender
- Diverging upon Impersonation
- 000 Static 000 000 R $\operatorname{recv}(sk, c)$: send(pk, m): $k \leftarrow_{\$}$ $(k,m) \leftarrow \operatorname{dec}(sk,c)$ $sk \leftarrow H(k, pk, c)$ $c \leftarrow \operatorname{enc}(pk, (k, m))$ $sk \leftarrow H(k, pk, c)$ Return (sk, m) $pk \leftarrow \text{gen}(sk)$ Return (pk, c)
- Optimal Performance ☺

Dynamic I minimized in the second se

Single Sender

 $(sk^*, pk^*) \leftarrow \text{gen}$ For all *i* in tree: $k \leftarrow \text{eval}(sk^*, pk_i)$ $sk_i \leftarrow \text{H}(k, pk_i, pk^*)$ $pk_i \leftarrow \text{gen}(sk_i)$

For all *i* on path: $k \leftarrow \text{eval}(sk_i, pk^*)$ $sk_i \leftarrow \text{H}(k, pk_i, pk^*)$

- FS for both
- PCS for Sender
- Diverging upon Impersonation
- Small ciphertexts

Outlook & Summary

Malicious Senders

Dynamic

• Unreliable Network

Unidirectional Group Messaging: Simple, Secure, and Efficient Solutions Cryptographic Applications Workshop | Paul Rösler | Zürich | 23-02-27

roeslpa.de

Open Discussion

- Sender Keys and Unidirectional Messaging:
 - Simple
 - Core: Forward Security
- Simplicity $\stackrel{?}{\Rightarrow}$ Verifiability / Trust
- MLS flexible but complex
- What are your thoughts?